Tensores Automáticos de ROSTA

Tensores sin mantenimiento para Correas y Cadenas

Tecnología de tensado

Tensado de cadenas

Las cadenas de rodillos son transmisiones de potencia por arrastre, lo que comporta por diseño, dependiendo de su calidad y uso, alargamientos del 1% al 3% de su longitud total. A pesar de estos alargamientos por envejecimiento, las cadenas transmiten correctamente los pares siempre que se sometan a un retensado periódico. Sin ajuste de tensión, la parte floja de la cadena queda constantemente colgando, la potencia se transmite de forma discontinua y se reduce el ángulo de agarre en los piñones. En estas condiciones la cadena no rodará suavemente sobre los dientes de los piñones, provocando un funcionamiento irregular de la transmisión y acelerando su envejecimiento (efecto polígono). La vida útil de la cadena puede alargarse considerablemente utilizando un Tensor Automático.

Los Tensores ROSTA evitan, gracias a su funcionamiento Automático y gran compensación del alargamiento, el «pandeo» y «latigazos» en la parte floja de la transmisión. Los Tensores ROSTA tienen su origen en las Unidades Elásticas ROSTA. Dependiendo de la aplicaciones, podemos suplementar al Tensor con un piñón ó patín para cadena, ó con un rodillo o polea para correas. (Ver pág. 35 «gama de productos» ó pág. 40 «tabla de selección»). El montaje de los juegos de piñones, patines y rodillos a los tensores debe realizarse por parte del cliente.

Tensión inicial

Los Tensores Automáticos ROSTA pueden compensar cuidadosamente la pretensión inicial y la necesaria extensión, mediante la torsión angular y la flecha recomendada. Un excesiva tensión inicial de la cadena debe evitarse para reducir las fuerzas de estiramiento y la presión en las uniones.

Amortiguación de Vibración

Los Tensores ROSTA fundamentados en la Unidad Elástica ROSTA, absorben, por presión elástica, una parte considerable de las vibraciones de la cadena. Los elastómeros amortiguan eficazmente las vibraciones y reducen el nivel de ruido de las transmisiones, principalmente originados por el efecto polígono.

Instalación

Instalaremos el piñón ó patín en la posición del brazo deseada, «normal» ó «dura» y lo aseguraremos con la tuerca

El ajuste lateral, permite una alineación rápida y simple del piñón ó patín sobre el camino de la cadena.

La fijación central de los tensores mediante un único tornillo, asegura un ahorro de tiempo en la instalación. Además sólo practicaremos un agujero en la máquina.

La fuerza de rozamiento, entre el apoyo circular del Tensor y la superficie plana y rígida de la máquina, está por encima de la posible sobretensión inicial a 30°. En la mayoría de los casos, no es necesario ningún sistema adicional de fijación. Sólo en superficies irregulares, debilitadas ó dañadas, la fuerza de rozamiento será insuficiente. Excepcionalmente para estos casos recomendamos asegurar la posición colocando un bloqueo en la ranura.

Ajuste lateral del Piñón ó Patín

Absorción de Golpes

Posicionamiento a 360°

Bloqueo de posición

Tensión infinitamente variable en posiciones «normal» y «dura»

Ángulo de torsión

Aligolo de loisioi

Único tornillo de fijación central; en la base ó en el frontal

Gama de Productos

Tensor Automático ROSTA Tipo SE, SE-G, SE-W

Pag. 37

Los tensores designados como SE (desde ŜE 11 al SE 50) son los más utilizados para tensado de transmisiones por cadenas y correas. Los elastómeros de estos tensores contienen una base de goma natural con una excelente memoria de la forma original. Diseñados para trabajar bajo temperaturas que oscilan entre –40 °C a +80 °C (–40 °F al +180 °F).

Los Tensores tipo SE-G (marcados con un punto amarillo) están equipados con elastómeros resistentes al aceite para trabajar en engranajes, bielas, etc.

Los Tensores tipo SE-W (marcados con un punto rojo) montan elastómeros resistentes a altas temperaturas. Su destino son aplicaciones con temperaturas desde +80°C a +120°C (+180°F a +250°F), tales como tensores para correas en motores diesel, tensores para cadenas en túneles de secado, rascadores de bandas cerca de zonas calientes, etc. Debido a la composición de estos elastómeros la tensión suministrada por los tipos SE-W se reduce en un 40% respecto a las versiones tipo SE standard y tipo SE-G.

Los brazos de los tensores son de acero; el cuerpo Tensor, hasta el tamaño 27, son de acero sinterizado, los tamaños SE 38 y 45 son de fundición GG25 y el tamaño SE 50 es de acero. La superficie de los tipos SE-G es zincada, los tipos SE y SE-W vienen pintados con laca de protección. Todos los tensores se entregan con un tornillo galvanizado para su montaje y fijación.

Pag. 38

Los Tensores ROSTA tipo SE-F están diseñados para aplicaciones donde hay dificultad de instalación ó no hay acceso para la misma, «estructuras ciegas». Las calidades de elastómeros, esfuerzos, materiales, y acabados son idénticos a los tipo SE. El tornillo especial de fijación con distanciador, es galvanizado y sujetado al cuerpo Tensor con un anillo de goma.

Tensores Automáticos ROSTA tipo SEI (Inoxidable)

Pag. 38

Todos los Tensores ROSTA tipo SEI están fabricados en Acero Inoxidable y con disponiblidad inmediata para 4 tamaños SEI 15, SEI 18, SEI 27, cuerpo en fundición y SEI 40 (similar al SE 38) con cuerpo soldado. La calidad de Acero Inoxidable corresponde al N.ºDIN. 1.4301 ó AISI 304. Diseñados especialmente para industria alimentaria y química. Equipados únicamente con calidad «Rubmix 10».

Tensor Automático ROSTA tipo SE-B «Boomerang»

Pag. 39

El Tensor ROSTA tipo SE-B «Boomerang» está diseñado para tensar y compensar la parte floja de transmisiones largas. El «Boomerang» con su doble brazo, y equipado con 2 juegos de piñón, ofrece una triple compensación de la parte floja de la transmisión.

Tensor Automático ROSTA tipo KSE para correas V

Pag. 39

En este caso, los Tensores ROSTA tipos SE 18, 27 y 38 montan un eje soldado con una polea standard tipo V de 1, 2 ó 3 canales para perfiles SPZ, SPA y SPB. Las poleas están disponibles también por separado.

Accesorios para tensores tipo SE

Juego de Piñón ROSTA tipo N

Pag. 4

El juego de piñón ROSTA completa el Tensor para aplicaciones de tensado de trasmisiones por cadena. La rueda dentada gira sobre un rodamiento a bolas auto-lubricado 2Z.

Juego de Patín ROSTA tipo P

Pag. 4

El juego de Patín ROSTA junto con el Tensor forman una alternativa económica para el tensado de transmisiones por cadena. La alta calidad del patín se consigue con un plástico industrial muy resistente a la fricción, además su diseño nos permite el uso de ambas caras. La máxima velocidad de la cadena no deberá exceder de 1.5 m/sec.

Rodillo ROSTA tipo R

Pag. 42

El rodillo ROSTA instalado con el correspondiente Tensor SE es un Tensor de correas ideal. El rodillo está fabricado con un plástico industrial de alta calidad y gira sobre dos rodamientos a bolas auto-lubrificados 2Z.

Selección del Tensor tipo SE para correas V

El tensor que buscamos debe tener, como mínimo, el 100 % de la fuerza necesaria para realizar el test de tensado de cada correa (para varias correas multiplicaremos por el n° de correas).

a) Tensando en la parte exterior de la correa con un rodillo liso (correas V)

- el diámetro del Rodillo debe ser como mínimo ²/₃ del diámetro de la polea pequeña,
- el ancho del Rodillo debería ser un 20% superior al ancho de la correa ó total de correas.

b) Tensando en la parte interior con poleas acanaladas

 la posición de la polea tensora deberá estar lo más cerca posible de la polea conducida, con el fin de evitar una disminución del ángulo de contacto en la polea motriz, habitualmente la de menor diámetro.

c) Selección del Tamaño de Tensor ROSTA

- 1. Buscar la fuerza necesaria para el test, según perfil de correa (p.e. tipo SPC = 90 N).
- 2. Multiplica la fuerza por el n° de correas (p. e. 5 correas SPC = $5 \times 90 = 450 \text{ N}$).
- 3. Duplica esta fuerza, para evitar posibles deslizamientos durante el arranque (2 x 450 N = 900 N).
- 4. Selecciona el Tensor ROSTA que nos de esta fuerza a unos 20° de pretensión (SE 38 ó SE 45).
- 5. Monta el Tensor ROSTA en la parte floja de la transmisión a unos 25° de pretensión para compensar el alargamiento inicial.

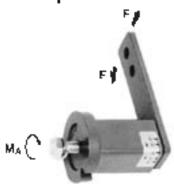
La Tensión F es infinitamente variable

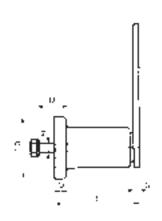
		Angulo de pre-tensión 10 normal		pre-tens	ılo de sión 20° mal	Angulo de pre-tensión 3 normal		
Tipo de elemen	ito	F en N	s en mm	F en N	s en mm	F en N	s en mm	
SE/SE-G	11	15	14	40	28	80	40	
SE/SE-F/SE-G	15	25	17	65	34	135	50	
SE-W	15	15	17	39	34	81	50	
SE/SE-F/SE-G	18	75	17	180	34	350	50	
SE-W	18	45	17	108	34	210	50	
SE/SE-F/SE-G	27	150	22	380	44	800	65	
SE-W	27	90	22	228	44	480	65	
SE/SE-F/SE-G	38	290	30	730	60	1500	87	
SE-W	38	174	30	438	60	900	87	
SE/SE-F/SE-G	45	500	39	1300	78	2600	112	
SE-W	45	300	39	780	78	1560	112	
SE/SE-F/SE-G	50	750	43	21 <i>5</i> 0	86	4200	125	
SE-W	50	450	43	1290	86	2520	125	

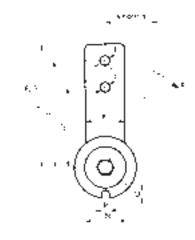
s = movimiento de brazo

Test de Tensado para las correas V (más habituales)

Tipo		Ø Polea pequeña [mm]	Fuerza para el Test* [N]
SPZ	(10N)	56 – 100	12- 15
SPA	(13 N)	100 – 140 100 – 132 140 – 200	17 – 20 25 – 27 30 – 35
SPB	(16N)	160 – 224 236 – 315	45 - 50 60 - 65
SPC	(22 N)	224 - 355 375 - 560	80 - 90 100 - 120
10 x 13 x 17 x 1 22 x 1 32 x 2	8 (A) 1 (B) 4 (C)	56 - 100 80 - 140 125 - 200 200 - 400 355 - 600	12 - 15 12 - 15 25 - 30 55 - 60 90 - 105


^{*} Test de Tensado para correas V. Debemos conseguir una deflexión de 16 mm por cada 1000 mm de distancia entre centros. Para distancias superiores o inferiores deberemos interpolar.




Tensor Automático

Tipo SE / SE-G / SE-W

Montaje Standard

Datos Técnicos

Art. N°	Tipo**	F max.* en N en la posición normal (J¹)	s max. en mm normal	Par M₄ en Nm	Peso en kg
06 011 001	SE 11 (Standard)	80	40	10	0.20
06013201	SE 11-G	80	40	10	0.20
06011002	SE 15 (Standard)	135	50	25	0.40
06013202	SE 15-G	135	50	25	0.40
06015002	SE 15-W	81	50	25	0.40
06011003	SE 18 (Standard)	350	50	49	0.60
06013203	SE 18-G	350	50	49	0.60
06015003	SE 18-W	210	50	49	0.60
06011004	SE 27 (Standard)	800	65	86	1.70
06013204	SE 27-G	800	65	86	1.70
06015004	SE 27-W	480	65	86	1.70
06011005	SE 38 (Standard)	1500	87.5	210	3.55
06013205	SE 38-G	1500	87.5	210	3.55
06015005	SE 38-W	900	87.5	210	3.55
06011006	SE 45 (Standard)	2600	112.5	410	6.40
06013206	SE 45-G	2600	112.5	410	6.40
06015006	SE 45-W	1560	112.5	410	6.40
06011007	SE 50 (Standard)	4200	125	750	9.00
06013207	SE 50-G	4200	125	750	9.00
06015007	SE 50-W	2520	125	750	9.00

^{*}La F max. en la posición «dura» (J²) es aprox. 25% superior.

Dimensiones

Art. N°	Tipo**	D	Е	G	Н	J۱	J ²	K	L	М	Ν	0	Р	Q	Т
06 011 001 06 013 201	SE 11 SE 11-G	35	51 ±1.5	5	M6	80	60	20	90	20	22	6	8	5	8.5
06 011 002 06 013 202 06 015 002	SE 15 SE 15-G SE 15-W	45	64-0.5	5	M8	100	80	25	112.5	25	30	8	8.5	6	10.5
06 011 003 06 013 203 06 015 003	SE 18 SE 18-G SE 18-W	58	79+1.5	7	M10	100	80	30	115	30	35	10.5	8.5	8	10.5
06 011 004 06 013 204 06 015 004	SE 27 SE 27-G SE 27-W	78	108-0.5	8	M12	130	100	50	155	40	52	15	10.5	10	12.5
06 011 005 06 013 205 06 015 005	SE 38 SE 38-G SE 38-W	95	140+2.5	10	M16	175	140	60	205	40	66	15	12.5	12	20.5
06 011 006 06 013 206 06 015 006	SE 45 SE 45-G SE 45-W	115	200-1	12	M20	225	180	70	260	50	80	18	12.5	12	20.5
06 011 007 06 013 207 06 015 007	SE 50 SE 50-G SE 50-W	130	210-1	20	M24	250	200	80	290	60	78	20	17	17	20.5

^{**} Tipo SE:

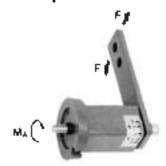
calidad standard

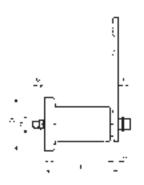
Tipo SE-G:

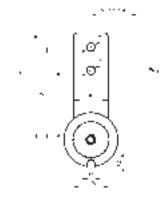
resistentes al aceite

Tipo SE-W: resistentes a la temperatura

[–] pintados con laca protectora


galvanizados punto amarillopintados con laca protectora punto rojo



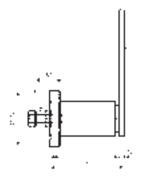

Tensor Automático

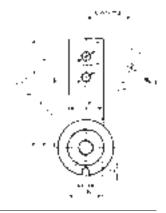
Tipo SE-F/SEI

Montaje Frontal

Datos Técnicos

Art. N°	Тіро	F max.* en N en la posición normal (J')	s max. en mm normal	Par M _A en Nm	Peso en kg
06 061 002	SE-F 15	135	50	17	0.40
06 06 1 00 3	SE-F 18	350	50	41	0.65
06 06 1 00 4	SE-F 27	800	65	83	1.85
06 06 1 00 5	SE-F 38	1500	87.5	145	3.70
06 06 1 00 6	SE-F 45	2600	112.5	355	6.90
06 06 1 00 7	SE-F 50	4200	125	690	10.10


^{*} La F max. en la posición «dura» (J²) es aprox. 25 % superior.


Dimensiones

Art. N°	Tipo	D	Е	G	Н	J۱	J²	K	L	М	Ν	0	Р	Q	R	Т
06 061 002	SE-F 15	45	64-1.5	5	M6	100	80	25	112.5	12.4	30	8	8.5	6	10	10.5
06 06 1 00 3	SE-F 18	58	79 ^{+1.5}	7	M8	100	80	30	115	18.9	35	10.5	8.5	8	12	10.5
06 06 1 00 4	SE-F 27	78	108+2	8	M10	130	100	50	155	17.5	52	15	10.5	10	16	12.5
06 06 1 00 5	SE-F 38	95	140+2	10	M12	175	140	60	205	18.0	66	15	12.5	12	19	20.5
06 06 1 00 6	SE-F 45	115	200+3	12	M16	225	180	70	260	33.0	80	18	12.5	12	27	20.5
06 06 1 00 7	SE-F 50	130	210+3	20	M20	250	200	80	290	23.0	78	20	1 <i>7</i>	1 <i>7</i>	28	20.5

Tensor ROSTA tipo SEI (Inoxidable)

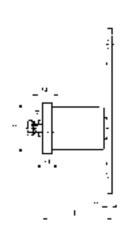
Datos Técnicos

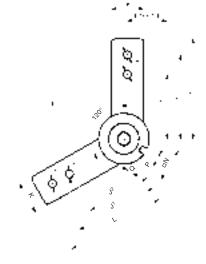
Art. N°	Тіро	F max.* en N en la posición normal (J¹)	s max. en mm normal	Par M _A en Nm	Peso en kg
06 071 111	SEI 15	150	50	25	0.35
06071112	SEI 18	400	50	49	0.70
06 07 1 1 1 3	SEI 27	860	65	86	1.92
06 07 1 1 0 4	SEI 40	1500	87.5	210	4.29

^{*} La F max. en la posición «dura» (J²) es aprox. 25 % superior.

Dimensiones

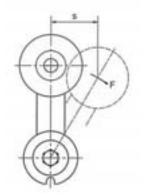
Art. N°	Тіро	D	Е	G	Н	Jı	J ²	K	L	М	Ν	0	Р	Q	Т
06 071 111	SEI 15	45	64	5	M 8	100	80	25	112.5	25	30	8	8.5	6	10.5
06 07 1 1 1 2	SEI 18	58	79	7	M10	100	80	30	115	30	35	10.5	8.5	8	10.5
06 07 1 1 1 3	SEI 27	78	108	8	M12	130	100	50	155	40	52	15	10.5	10	12.5
06 07 1 1 0 4	SEI 40	100	140	10	M16	175	140	70	205	40	70	15	12.5	12	20.5

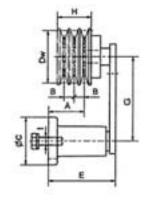



Tensor Automático

Tipo SE-B/KSE

Tensor ROSTA tipo SE-B


Ver pagina 37 para más información


Art. N°	Тіро	F max.* en N en la posición normal (J¹)	s max. en mm normal	Par M _A en Nm	Peso en kg
06 021 003	SE-B 18	1 <i>75</i>	50	49	0.75
06 021 004	SE-B 27	400	65	86	2.10

^{*} La F max. en la posición «dura» (J²) es aprox. 25 % superior.

Tensor ROSTA tipo KSE para Correas V

Ver pagina 37 para más información

Art. N°	Тіро	n° canales	rpm. max.	F max. en Nm		Α	В	ØC	Dw	E	G	Н	I	Peso en kg
06 201 001	KSE 18-SPZ	<u> </u>	10 000	350	50	42	12	58	63	79	100	28	M10	0.9
06 201 002	KSE 18-SPZ	2	10000	350	50	48	12	58	63	79	100	35	M10	1.2
06 201 003	KSE 18-SPZ	3	10000	350	50	42	12	58	63	79	100	40	M10	1.3
06 201 004	KSE 27-SPA	1	7400	800	65	64	15	78	90	108	130	36	M12	2.6
06 201 005	KSE 27-SPA	. 2	7400	800	65	71	15	78	90	108	130	45	M12	3.2
06 201 006	KSE 27-SPA	3	7400	800	65	67.5	15	78	90	108	130	60	M12	3.5
06 201 007	KSE 27-SPB	1	5300	800	65	66.5	19	78	125	108	130	36	M12	4.2
06 201 008	KSE 27-SPB	2	5300	800	65	68	19	78	125	108	130	55	M12	5.7
06 201 009	KSE 38-SPB	3	4000	1500	87.5	94	19	95	125	140	175	63	M16	8.1

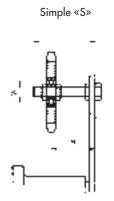
Tabla de Selección

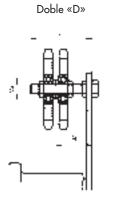
	 	\$ \			(
DIN 8187 ISO R606	T x Ancho	Tipo N	Tipo P	Tamaño	Tipo R	Ancho max. de correa
06 B-1 06 B-1 06 B-2 06 B-2 06 B-3	3/8" x 7/32" 3/8" x 7/32" 3/8" x 7/32" 3/8" x 7/32" 3/8" x 7/32" 3/8" x 7/32"	3/8"-10 S 3/8"-10 D 3/8"-10 T	³ /8"-8 S ³ /8"-8 D	11 15/18 15/18 11 18	11	30
08 B-1 08 B-2 08 B-3	¹ /2" x ⁵ /16" ¹ /2" x ⁵ /16" ¹ /2" x ⁵ /16"	1/2"-10 S 1/2"-10 D 1/2"-12 T	¹ /2″-10 S ¹ /2″-10 D	15/18 15/18 27	15/18	40
10 B-1 10 B-1 10 B-2 10 B-2 10 B-3 10 B-3	5/8" x 3/8" 5/8" x 3/8" 5/8" x 3/8" 5/8" x 3/8" 5/8" x 3/8" 5/8" x 3/8" 5/8" x 3/8"	5/8"-12 S 5/8"-12 D 5/8"-12 T 5/8"-20 T	⁵ /8″-10 S ⁵ /8″-10 D	18 27 18 27 27 38	27	55
12 B-1 12 B-1 12 B-2 12 B-2 12 B-3	3/4" x 7/16" 3/4" x 7/16" 3/4" x 7/16" 3/4" x 7/16" 3/4" x 7/16" 3/4" x 7/16"	³ / ₄ " -12 S ³ / ₄ " -20 S ³ / ₄ " -12 D ³ / ₄ " -20 D ³ / ₄ " -20 T	³ / ₄ "-12 S ³ / ₄ "-12 D	27 38 27 38 38	38	85
16 B-1 16 B-2 16 B-3	1" x 17 mm 1" x 17 mm 1" x 17 mm	1"-20 S 1"-20 D 1"-20 T		38 38 45	45	130
20 B-1 20 B-2 20 B-3	$1^{1}/4'' \times {}^{3}/4''$ $1^{1}/4'' \times {}^{3}/4''$ $1^{1}/4'' \times {}^{3}/4''$	1 ¹ / ₄ "-20 S 1 ¹ / ₄ "-20 D 1 ¹ / ₄ "-20 T		45 45/50 45/50		
24 B-1 24 B-2 24 B-3	1 ¹ /2" x 1" 1 ¹ /2" x 1" 1 ¹ /2" x 1"	1 ¹ / ₂ "-20 S 1 ¹ / ₂ "-20 D 1 ¹ / ₂ "-20 T		45 45/50 45/50		
32 B-1 32 B-2 32 B-3	2" x 1¹/4" 2" x 1 ¹ /4" 2" x 1 ¹ /4"			50 50 50		

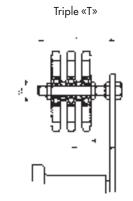
Ejemplo de selección

Datos:

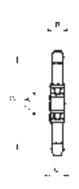
Una transmisión por cadena de rodillos 16B-2 norma DIN 8187 de paso 1" duplex. El tensor debe montarse en un espacio de la estructura metálica (montaje frontal), a temperatura normal (máx. +80°C), sin que la superficie tenga que tener ningún tratamiento especial.


Seleccionado:


Tensor automático ROSTA SE-F 38 Art. N° 06 061 005 Juego de piñón ROSTA N 1″-20 D Art. N° 06 520 006



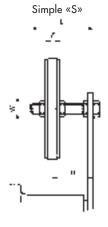
Juego de Piñón Tipo N

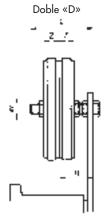


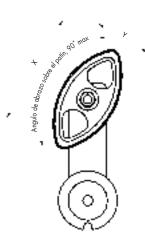
		Cadena de Rodillo)			Ajuste lateral*	Peso
Art. N°	Tipo	DIN 8187	N° de dientes	W	L	R	en kg
Simple «S»							
06 510 001	N ³ /8"-10 S	ISO 06 B-1	15	M10	55	22-43/23-43*	0.15
06 510 002	N ¹ / ₂ "-10 S	ISO 08 B-1	15	M10	55	23-44	0.20
06 510 003	N ⁵ /8"-12 S	ISO 10 B-1	15	M12	80	27-65	0.35
06 510 004	$N^{3}/4''-12 S$	ISO 12 B-1	15	M12	80	27-65	0.55
06 510 005	$N^{3}/4''-20 S$	ISO 12 B-1	15	M20	100	40-80	0.85
06 510 006	N1"-20 S	ISO 16 B-1	13	M20	100	40-80	1.25
06 510 007	N 1 ¹ /4" - 20 S	ISO 20 B-1	13	M20	100	40-80/48-80*	2.00
06 510 008	N 1 ¹ /2" - 20 S	ISO 24 B-1	11	M20	140	40-120/48-120*	2.35
Doble «D»							
06 520 001	N ³ /8"-10 D	ISO 06 B-2	15	M10	55	27-39/28-39	0.20
06 520 002	N ¹ / ₂ "-10 D	ISO 08 B-2	15	M10	55	30 – 37	0.35
06 520 003	N ⁵ /8"-12 D	ISO 10 B-2	15	M12	80	36-57	0.60
06 520 004	N ³ / ₄ "-12 D	ISO 12 B-2	15	M12	80	37 – 56	1.05
06 520 005	$N^{3}/4''-20 D$	ISO 12 B-2	15	M20	120	50-90	1.35
06 520 006	N1"-20 D	ISO 16 B-2	13	M20	120	55-84	2.10
06 520 007	N 1 ¹ / ₄ " - 20 D	ISO 20 B-2	13	M20	140	60-120/68-120*	3.60
06 520 008	N 1 ¹ /2" - 20 D	ISO 24 B-2	11	M20	140	65-97/73-97*	4.25
Triple «T»							
06 530 001	N ³ /8"-10 T	ISO 06 B-3	15	M10	70	33-48	0.25
06 530 002	N ¹ / ₂ "-12 T	ISO 08 B-3	15	M12	80	41 – 51	0.50
06 530 003	N ⁵ /8"-12 T	ISO 10 B-3	15	M12	80	43 – 50	0.95
06 530 004	N ⁵ /8"-20 T	ISO 10 B-3	15	M20	120	56-84	1.25
06 530 005	$N^{3}/4''-20 T$	ISO 12 B-3	15	M20	120	59-80	1.50
06 530 006	N1"-20 T	ISO 16 B-3	13	M20	160	74-108	2.90
06 530 007	N 1 ¹ / ₄ " - 20 T	ISO 20 B-3	13	M20	160	78 – 105/86 – 105*	5.20
06 530 008	N 1 ¹ / ₂ " - 20 T	ISO 24 B-3	11	M20	180	90-111/98-111*	6.20

^{*} Para ver el correspondiente tamaño SE, ver página 40.

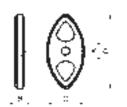
Piñón solo




	C	adena de Rodi	llo N°					Peso
Art. N°	Tipo	DIN 8187	de dientes	Α	В	С	D	en kg
06 500 001	N³/8″-10	ISO 06 B	15	10	5.3	9	45.81	0.06
06 500 002	N 1/2"-10	ISO 08 B	15	10	7.2	9	61.08	0.15
06 500 003	N 1/2"-12	ISO 08 B	15	12	7.2	12	61.08	0.15
06 500 004	N ⁵ /8"-12	ISO 10 B	15	12	9.1	12	76.36	0.27
06 500 005	N ⁵ /8"-20	ISO 10 B	15	20	9.1	15	76.36	0.29
06 500 006	N ³ /4"-12	ISO 12 B	15	12	11.1	12	91.63	0.47
06 500 007	N ³ /4"-20	ISO 12 B	15	20	11.1	15	91.63	0.47
06 500 008	N1"-20	ISO 16 B	13	20	16.1	15	106.14	0.88
06 500 009	N 1 1/4" - 20	ISO 20 B	13	20	18.5	15	132.67	1.60
06 500 010	N 1 1/2" - 20	ISO 24 B	11	20	24.1	15	135.23	1.93



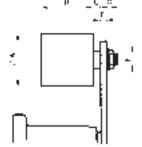
Juego de Patín Tipo P



Datos Técnicos

	(Cadena de Rodillo						Ajuste lateral*	Peso
Art. N°	Тіро	DIN 8187	W	L	Х	Υ	Z	R [mm]	en kg
Simple «S»									
06 550 001	P³/8″-8S	ISO 06 B-1	M8	45	74	40	10.2	19-34	0.05
06 550 002	P ¹ /2"-10 S	ISO 08 B-1	M10	55	96	50	13.9	23-41	0.10
06 550 003	P ⁵ /8"-10 S	ISO 10 B-1	M10	55	126	65	16.6	24-39	0.12
06 550 004	P ³ / ₄ "-12 S	ISO 12 B-1	M12	80	148	74	19.5	30-61	0.18
Doble «D»									
06 560 001	P ³ /8" - 8 D	ISO 06 B-2	M8	45	74	40	10.2	25 - 30	0.07
06 560 002	P ¹ /2"-10 D	ISO 08 B-2	M10	55	96	50	13.9	30-34	0.12
06 560 003	P ⁵ /8"-10 D	ISO 10 B-2	M10	70	126	65	16.6	34-46	0.17
06 560 004	P ³ / ₄ "-12 D	ISO 12 B-2	M12	80	148	74	19.5	40 – 52	0.26

^{*} Para ver el correspondiente tamaño SE, ver página 40.


Patín Solo Tipo P

Art. N°	Тіро	Cadena de Rodillo DIN 8187	A ^{+0.2}	В	С	D	Peso en kg
06 540 001	$P^{3}/8''$	ISO 06 B	8	10.2	40	75	0.02
06 540 002	$P^{1/2''}$	ISO 08 B	10	13.9	50	96	0.03
06 540 003	$P^{5}/8''$	ISO 10 B	10	16.6	65	126	0.05
06 540 004	$P^{3}/4''$	ISO 12 B	12	19.5	74	148	0.07

Rodillo ROSTA

Tipo R

	1	max. velocidad										
Art. N°	Tipo	rpm	Α	В	С	D	E max.	F	en kg			
06 580 001	R 11	8000	30	35	2	14	5	M8	0.08			
06 580 002	R 15/18	8000	40	45	6	16	7	M10	0.17			
06 580 003	R 27	6000	60	60	8	1 <i>7</i>	8	M12	0.40			
06 580 004	R 38	5000	80	90	8	25	10	M20	1.15			
06 580 005	R 45	4500	90	135	10	27	12	M20	1.75			

Instrucciones de Montaje

Tensado «SE, SE-G, SE-W»

Se afloja el tornillo A, se ajusta la tensión cogiendo el cuerpo del Tensor con una llave inglesa y girándolo en la dirección deseada. A continuación, manteniendo la tensión creada, se bloquea apretando el tornillo.

Ángulo de Torsión

La escala de ángulos V muestra constantemente la pretensión dada. La ranura P utilizada excepcionalmente para un bloqueo adicional, facilita también el raglaje utilizándose como referencia.

Tensado «SE-F»

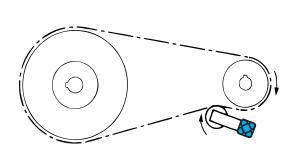
Para instalaciones sin acceso posterior. Se afloja el tornillo sexagonal A, se ajusta la tensión cogiendo el cuerpo del Tensor con una llave inglesa y girándolo en la dirección deseada. A continuación, manteniendo la tensión creada, se bloquea apretando el tornillo exagonal.

Ajuste Lateral

Mantenemos la posición del piñón ó patin entre las dos tuercas C. Ajustando la distancia R conseguiremos una alineación exacta sobre la cadena. La tuerca B se mantiene siempre bloqueada.

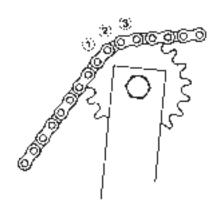
Sujeción central

Los Tensores ROSTA se montan sobre una parte plana y rígida de la máquina, de no ser posible recomendamos utilizar el **soporte WS** (ver pág. 27).

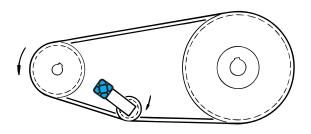


Disposición en «Z»

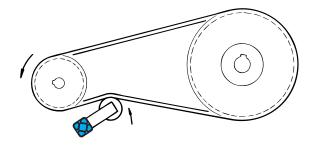
En caso de que los piñones ó rodillos sean montados en la parte exterior del brazo Tensor, la separación será la menor posible. La tensión máxima será un 50% de su capacidad.



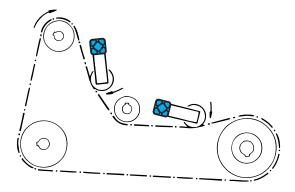
Instrucciones de montaje


Disposición normal

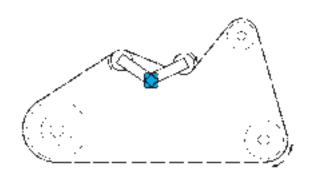
Los Tensores ROSTA se montan en la parte floja de la transmisión, tan cerca como sea posible del piñón mayor y guiando la cadena desde su parte exterior. La posición ideal del brazo quedaría lo mas paralelo posible a la cadena.


Engrane de la cadena

Cuando tensamos por primera vez, al menos 3 dientes del piñón deben engranar con la cadena. La distancia entre el piñón Tensor y el siguiente piñón debe ser como mínimo de 3 uniones.


Tensado de correas V - Rodillo interno

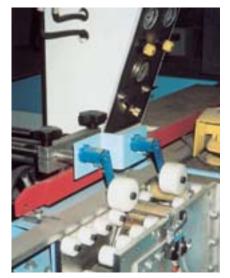
Pueden montarse en cualquier punto de la parte floja de la transmisión. Transmisiones con vibraciones y grandes distancias entre centros, recomendamos utilizar poleas con canales profundos.


Tensado de correas V - Rodillo externo

Si utilizamos Tensores ROSTA con Rodillo, para tensado exterior de correas, recomendamos, debido a las diferentes estructuras ó formas constructivas, consultar las instrucciones del fabricante de las correas. El montaje de rodillos externos ó internos debe hacerse lo mas lejos posible de la siguiente polea conducida.

Montaje

Al montar el Tensor debemos pre-tensarlo y ajustarlo axialmente. La posición ideal del brazo será lo mas paralelo posible a la cadena y en sentido a la dirección de la transmisión. Utilizando varios Tensores en trasmisiones muy largas conseguiremos un movimiento de tensado más efectivo.

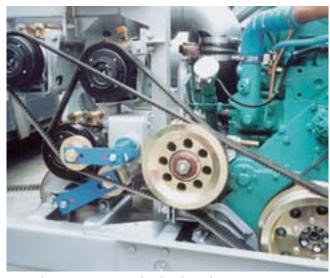


Aplicación del Tensor SE-B «Boomerang»

Para tensar y compensar la parte floja de transmisiones largas, debemos tensar las correas ó cadenas con 2 ó más tensores. El nuevo «Boomerang» de ROSTA con su doble brazo y equipado con 2 juegos de piñón, ó la combinación de rodillo Tipo R y polea, ofrece, comparado con tensores tradicionales, una triple compensación.

Aplicaciones

Rodillos tensores en máquina embaladora


Suspensión de cepillo circular en una cosechadora de patatas

Tensor de correa entre motor diesel y Compresor

Tensor de correa en compresor

Tensor de correa entre motor diesel y Alternador

Suspensión de Rodillos tensores en una fábrica de madera

Suspensión elástica en rascador de banda

Aplicaciones

Tensor de cadena en una máquina perforadora en la industria minera

Tensor de cadena en una enfardadora

Tensor Boomerang en una máquina agrícola

Tensor de máquina planadora

Cadena guia elástica en la entrada de un aserradero

Tensor de cadena en máquina de papel

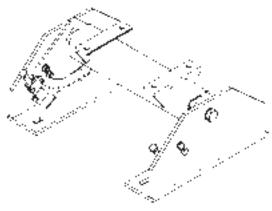
Tensor de correa en la entrada de una pulidora

Bases Tensoras ROSTA

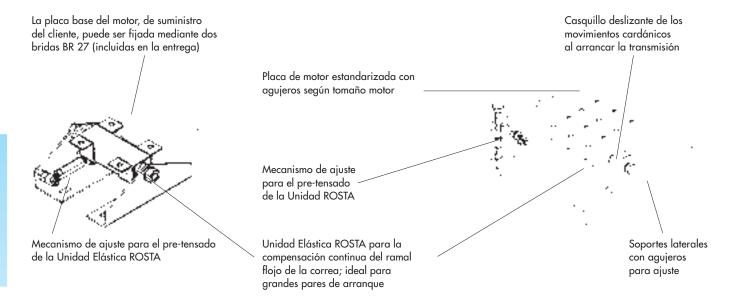
Auto-tensado de transmisiones por correas

sin deslizamientos auto-ajustables sin mantenimiento

Tecnología


Bases tensoras ROSTA Tipo MB para transmisiones por correa

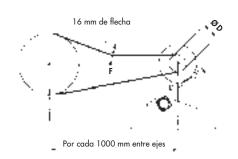
Las Bases Tensoras Automáticas ROSTA tipo MB, con Unidades Elásticas como sistema basculante, compensan continuamente toda clase de estiramientos, saltos, vibraciones y tiros excesivos en el arranque, gracias a su sistema de pre-tensión con capacidad de amortiguación. Las Bases Tensoras ROSTA estandarizadas, son la solución ideal para las transmisiones de toda clase de correas desde potencias de 0.75 a 110 kW.


Las transmisiones por correas, en particular las transmisiones con una o mas correas trapezoidales, transmiten el par requerido sólo si la tensión de la correa es la adecuada. Por este motivo, tales transmisiones precisan de un mecanismo para ajustar la posición del motor ó un tensor de correas para compensar el estiramiento normal de las correas (en las trapezoidades hasta un 3-5% de la longitud total).

Un mal ajuste de la tensión significa: serias pérdidas de potencia, sobrecalentamientos, deformaciones circunferenciales, temblores, vibraciones, excesivo desgaste de las poleas y potencialmente el fallo prematuro. Los dispositivos con ajuste rígidos puramente mecánicos, como los carriles tensores de tornillo, o tensores de correas fijos con ranuras de ajuste, sólo pueden compensar provisionalmente el estiramiento de las correas. Cuando se acciona una maquinaria pesada, estos mecanismos no hacen un retensado contino de las correas ni una compensación de los excesivos pares de arranque. Además necesitan frecuentes reajustes y mantenimiento, lo que requieren costosos paros de máquina.

Base Tensora ROSTA tipo MB 70

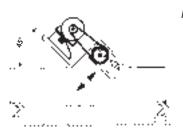
Tipo MB 27 Tipo MB 50



Tecnología

Tensado de correas

Las Bases Tensoras ROSTA proporcionan la tensión recomendada por el fabricante de las correas, mediante el mecanismo de pretensión. La tabla de la derecha muestra el test de fuerzas utilizado por la mayoría de fabricantes de correas tipo V. Esta tabla de pretensiones se adecua para la mayoría de aplicaciones.

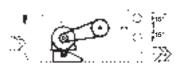

Control de tensión para Correas V

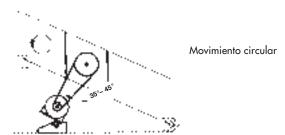
(Correas tipo V más utilizadas)

Tipo de Co	rrea	Ø polea pequeña en mm	Control de fuerza en N*
SPZ	(10 N)	56 - 95 100 - 140	12- 15 17- 20
SPA	(13 N)	100 – 132 140 – 200	25 - 27 30 - 35
SPB	(16N)	160 – 224 236 – 315	45 - 50 60 - 65
SPC	(22 N)	224 - 355 375 - 560	80 - 90 100 - 120
10 x 13 x 17 x 1 22 x 1 32 x 2	8 (A) 1 (B) 4 (C)	56 - 100 80 - 140 125 - 200 200 - 400 355 - 600	12 - 15 12 - 15 25 - 30 55 - 60 90 - 105

^{*} Control de tensión para correas V. Para una tensión ideal de la correa debemos conseguir una flecha de 16 mm por cada 1000 mm de distancia entre centros. (Para distancias entre centros superiores e inferiores, hay que interpolar el valor de 16 mm.)

Montajes Habituales de las Bases Tensoras ROSTA en Cribas



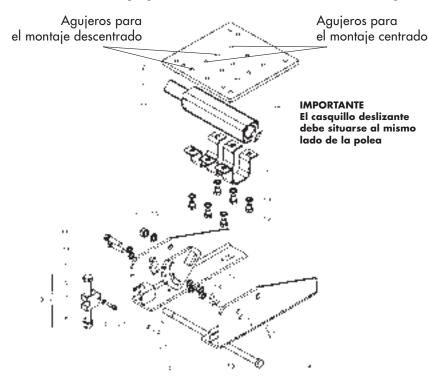

Movimiento lineal

1. Configuración «Superior»

La placa Base centrada sobre la unidad ROSTA y paralela a sus soportes laterales. La instalación de la Base a 45° (alineada al vibrador).

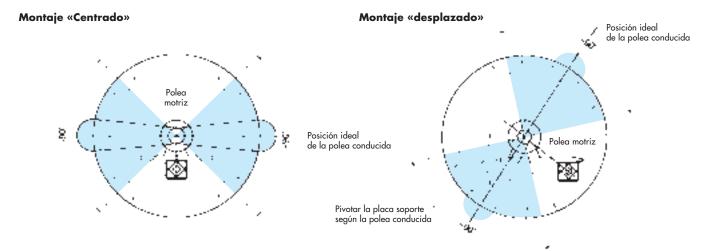
2. Configuración «Lateral»

La placa Base centrada sobre la unidad ROSTA y paralela a sus soportes laterales. El eje motor debe estar un mínimo de 15° por encima ó debajo del eje excéntrico.


3. Configuración «Inferior»

La placa Base desplazada sobre la unidad ROSTA e inclinada unos 35° a 45° respecto a la vertical (evita que las correas se salgan al pasar por la resonancia).

Tecnología


Guía de montaje para la Base Tensora ROSTA tipo MB 50

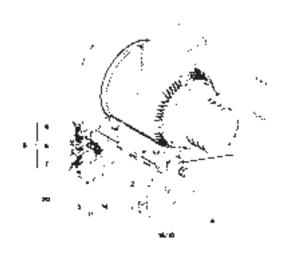
- Unidad Elástica ROSTA
- 2 Placa-base
- 3 Brida tipo BR 50
- 4 Soporte lateral derecho
- 5 Soporte lateral izquierdo
- 6 Placa de fricción
- 7 Sistema de Ajuste
- 8 Tornillo de gato M 20 x 1.5
- 9 Dispositivo de Pre-tensado
- 10 Eje con cabeza hexagonal M 20
- 11 Tornillo con cabeza hexagonal M16
- 12 Arandela M16
- 13 Arandela Glover M16
- 14 Tuerca hexagonal M16
- 15 Arandela Glover M 20
- 16 Tuerca hexagonal M 20
- 17 Escala de tensado
- 18 Casquillo deslizante
- 19 Tornillo con cabeza hexagonal M16
- 20 Tornillo de anclaje M 10
- 21 Arandela Elástica M 10

Colocación del Motor sobre la Base Tensora

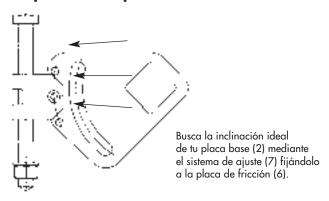
La correcta colocación del motor sobre la base, es importante para la buena utilización del arco de pretensión del elemento ROSTA. Por ejemplo: el brazo de palanca entre el eje del elemento y el eje del motor, debe ser suficiente para compensar el máximo alargamiento de las correas sin tener que re-tensar. Los dibujos adjuntos, muestran la posición ideal (zona azul) del motor sobre la Base. Cada placa base viene taladrada para poderse montar «centrada» y/o «desplazada».

Si la polea conducida está lateralmente colocada respecto a la polea motriz (±45° arriba ó debajo de la línea central), colocaremos el motor **«centrado»** sobre la placa.

Si la polea conducida está por encima ó por debajo de la polea motriz, entonces colocaremos el motor **«descentrado»** sobre la placa. Encontraremos la inclinación ideal a través del sistema de ajuste (7) fijado por la placa de fricción (6).



Tecnología


Instrucciones de montaje

Precaución: Sitúa el motor sobre la placa base (2) sólo si has fijado el sistema de ajuste (7) a la placa de fricción (6).

- Atornilla los soportes laterales (4) y (5) de la Base Tensora a la máquina. Comprueba la alineación de la placa base (2) de acuerdo con su posición de trabajo óptimo (ver pag. 93) mediante el tornillo de gato (8) y cambia la posición de la placa de fricción si es necesario (6).
- 2. Fija el motor a la placa base. La polea motriz debe quedar en el mismo lado donde está el casquillo deslizante.

Dispositivo de pre-tensado MB 50/70

El sistema de pre-tensado de las Bases Tensoras ROSTA tipo MB 50/70 realiza una movimiento de rotación en el perfil interior del elemento ROSTA. Esta rotación, nos da la pretensión deseada sobre las correas y compensa el alargamiento de las mismas. Girando el tornillo de gato, tensamos o destensamos las correas. En las placas de fricción, tenemos distintas posiciones para fijar el sistema de ajuste mediante tornillos. Cambiando estas posiciones obtendremos el mejor ángulo de trabajo entre polea motriz y conducida.

- 3. Gira el Tornillo de gato M20 (8) en sentido horario para levantar el motor y colocar las correas en la polea.
- Gira el Tornillo de gato M20 (8) en sentido antihorario para tensar las correas. Comprueba la tensión según la tabla de la pag. 93.
- Aprieta todos los tornillos M16 (11) de la placa de fricción, después de regular la tensión; aprieta las tuercas (14) a un par de 200 Nm.
- 6. Aprieta las tuercas M20 (16) del eje central (10) a un par de apriete de 360 Nm
- En principio, el sistema de ajuste (7) con el Tornillo de gato (8) puede quiarse aflojando el tornillo hexagonal M10 (20) (para protegerlo de posible corrosión y suciedad.)
- 8. Coloca el protector de correas.

Instrucciones para retensar

Las bases tensoras ROSTA retensan automáticamente las correas. Por tanto, no es necesario retensar regularmente. Se recomienda en casos donde hay una gran distancia entre poleas comprobar ocasionalmente la tensión de las correas.

Casquillo deslizante en las MB 50/70

El casquillo deslizante (18) debe colocarse en el lado de la polea.

Las Bases Tensoras tipo MB 50/70 traen un casquillo cardánico deslizante entre el perfil exterior y el interior. Este casquillo compensa las fuerzas radiales de las correas y mantiene los dos componentes en paralelo. Este casquillo debe colocarse en el lado de la polea motriz (ver en ensamblaje de la Base). Si montamos este casquillo en el lado del ventilador del motor, tendremos un desalineamiento de las poleas y en consecuencia un mal funcionamiento.


Gama de Productos

Base Tensora ROSTA tipo MB 50

De página 98 a 101

El tipo MB 50, es la Base Tensora universal para auto-ajustar correas que transmiten la potencia de motores eléctricos desde 5,5 a 45 Kw. (tamaños 132 S a 225 M). Existen 5 Unidades elásticas ROSTA de distinta longitud según sea la potencia del motor a transmitir. Las Bases Tensoras ROSTA MB 50 se suministran en Kits para que el usuario pueda integrar el Sistema en el bastidor actual de la máquina, no siendo necesario, en este caso, adquirir los soportes laterales. La placa Base puede montarse «centrada» ó «descentrada» según la posición de la transmisión (ver pag. 94). El sistema de pre-tensado puede montarse de 3 formas diferentes para distintos ángulos de inclinación de la placa base. La tensión de las correas podrá ser ajustada en cualquier momento de acuerdo al tamaño ó cantidad de correas instaladas. La Base Tensora ROSTA (pág. 99) tipo MB 50 se suministra desmontada en sus distintos Kits. Todas las partes metálicas vienen pintadas.

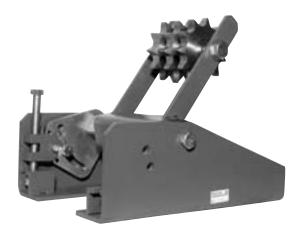
Base Tensora ROSTA tipo MB 70

Página 102 y 103

El tipo MB 70, es la Base Tensora universal para auto-ajustar correas que transmiten la potencia de motores eléctricos desde 37 a 110 Kw. (tamaños 250 M a 315 S). Existen 3 Unidades elásticas ROSTA de distinta longitud según sea la potencia del motor a transmitir. Las Bases Tensoras ROSTA MB 70 se suministran en Kits (ver pág. 102/103). La placa Base no se suministra, aunque puede suministrarse para series. El sistema de pre-tensado puede montarse de 11 formas diferentes para distintos ángulos de inclinación de la placa base. La tensión de las correas podrá ser ajustada en cualquier momento de acuerdo al tamaño ó cantidad de correas instaladas. La Base Tensora ROSTA tipo MB 70 se suministra desmontada en sus distintos Kits. Todas las partes metálicas vienen pintadas.

Página 104

Ideal para pequeñas transmisiones por correa con motores eléctricos desde 0,75 a 4.0 Kw. (tamaños 90 S/L a 112 M). Esta Base se entrega totalmente montada pero sin placa base, que será suministro del cliente. Gracias a su diseño compacto, el tipo MB 27 puede instalarse en cualquier parte sin grandes cambios de diseño. La MB 27 es la alternativa ideal a los obsoletos e inmóviles raíles tensores. El sistema de pretensión con un tensor de rosca permite una amplia gama de posiciones para adaptarse al ángulo de polea conducida. Todas las partes metálicas vienen pintadas.

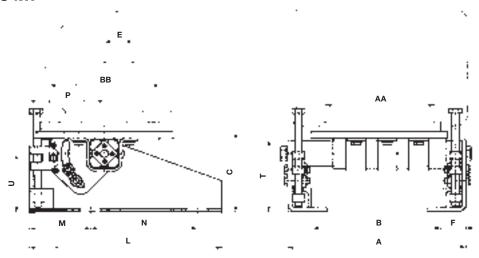

Gama de Productos

Unidades Elásticas ROSTA tipo DK-S

Página 105

Pueden construirse Bases Tensoras Automáticas a partir de Unidades Elásticas ROSTA tipo DK-S y una Placa Base de su suministro. Este sistema es factible para transmisiones de gran velocidad con potencias desde 0.25 a 7.5 Kw. Las Unidades Elásticas ROSTA DK-S de exterior cilíndrico, permiten posicionar y pretensar la placa base. Este se fija a las unidades mediante un perfil cuadrado que se inserta en las Unidades.

Base Tensora ROSTA tipo MB como Tensor de Cadena


Para cadenas de más de 1" 1/2, no existen tensores estandarizados en el mercado. Un metro de cadena de 1" 1/2 triple (ISO 24-3) pesa 16 kg. Si sumamos los metros de cadena más la fuerza centrífuga que se genera con el movimiento, obtendremos una sobrecarga en la parte floja de la transmisión. El sistema de auto-tensado ROSTA tipo MB 50 es ideal para montar juegos de piñones en transmisiones pesadas y duras. Debido a que compensa el alargamiento de la transmisión, no es necesario ningún mantenimiento.

La foto adjunta, muestra una posible configuración. El Kit n° 1 (elemento elástico) incorpora unos brazos soldados (trabajo a realizar en ROSTA) donde colocaremos los juegos de piñón. Por favor, solicita oferta!

Base Tensora Tipo MB 50

Para potencias de 5.5 a 45 kW

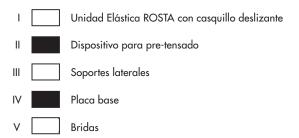
Selección

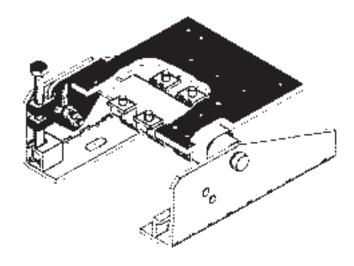
Base Motor Tipo	Tamaño Motor	1000 min ⁻¹ kW	1500 min ⁻¹ kW	3000 min ⁻¹ kW	AA	ВВ
MB 50 x 160	D 132S	3	5.5	5.5 – 7.5	140	216
	D 132M	4-5.5	7.5	–	178	216
MB 50 x 200	D 160M	7.5	11	11-15	210	254
	D 160L	11	15	18.5	254	254
MB 50 x 270	D 180M	-	18.5	22	241	279
	D 180L	15	22	-	279	279
MB 50 x 400	D 200L	18.5 – 22	30	30-37	305	318
MB 50 x 500	D 225S	-	37	-	286	356
	D 225M	30	45	45	311	356

Dimensiones

(Ver dimensiones en pág. 99–101 «Kits de ensamblaje»)

Base Motor					Dim	nensiones en	mm				
Tipo	Α	В	С	E*	F	L	М	Ν	Р	T	U
MB 50 x 160	355	225	204	43	65	490	155	272	190	185	150
MB 50 x 200	455	325	204	45	65	490	155	272	190	185	150
MB 50 x 270	455	325	204	72	65	490	155	272	190	185	150
MB 50 x 400	555	425	204	72	65	490	155	272	190	185	150
MB 50 x 500	605	475	204	72	65	490	155	272	190	185	150


^{*}Las placas bases tienen dos lineas de agujeros para la sujeción, mediante las bridas, a la Unidad, permitiéndonos el montaje centrado o descentrado de la misma (dimensión E).



Kits de Ensamblaje

Tipo MB 50

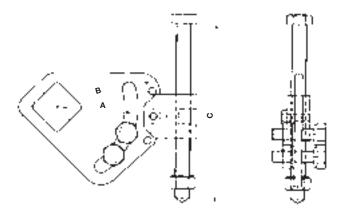
Kits de ensamblaje

Base Motor Tipo	Kit n°	Cantidad piezas		Art. n°	Base Motor Tipo	Kit n°	Can piez	tidad as	Art. n°
MB 50 x 160	1	1		13 020 506	MB 50 x 400	1	1		13 020 509
MID SUX TOU		1		13 020 500	MB 30 X 400		2		13 040 501
	II.	1 1				II III	1	1 1	
	III		erecha	13 530 501		III	1	derecha	13 530 501
		l izo	quierda	13 530 502			l .	izquierda	13 530 502
	IV	1		13 010 501		IV	1		13 010 504
	V	2		01 500 007		V	4		01 500 007
MB 50 x 200	ı	1		13 020 507	MB 50 x 500	ı	1		13 020 510
	II.	1		13 040 501		II	2		13 040 501
	iii	1 de	recha	13 530 501		III	1	derecha	13 530 501
			quierda	13 530 502			1	izquierda	13 530 502
	IV	1	quioraa	13 010 502		IV	1	124010144	13 010 505
	V	2		01 500 007		V	5		01 500 007
MB 50 x 270	ı	1		13 020 508					
MD OO X 27 O	il	1		13 040 501					
	iii	1 da	recha	13 530 501					
	""			13 530 501					
	N /	1 120	quierda						
	IV	I		13 010 <i>5</i> 03					
	V	3		01 500 007					

Unidad Elástica ROSTA con casquillo deslizante

Kit I

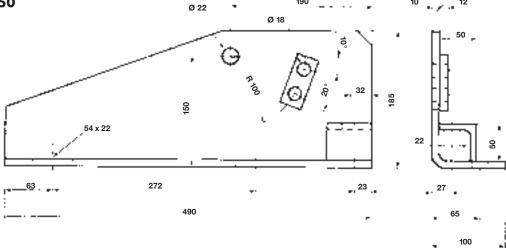
Art. n°	Base Motor Tipo	А	В	С	D	Peso en kg
13 020 506	MB 50 x 160	335	225	68	2	4.9
13 020 507	MB 50 x 200	435	240	153	2	5.8
13 020 508	MB 50 x 270	435	290	103	2	6.3
13 020 509	MB 50 x 400	535	420	73	24	8.3
13 020 510	MB 50 x 500	585	518	25	24	9.6



Kits de Ensamblaje

Tipo MB 50

Dispositivo para pre-tensado MB 50

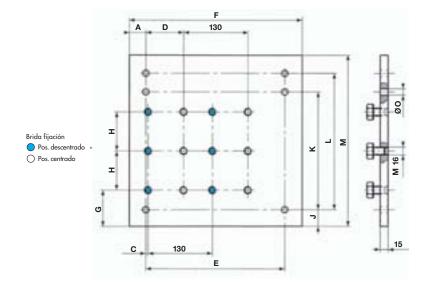

Kit II

		Dimensiones en mm							
Art. n°	Descripción	A	В	С	en kg				
13 040 501	Dispositivo para pre-tensado MB 50	100	130	220	2.72				

Soportes laterales MB 50

Kit III

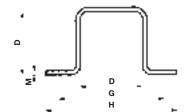
Art. n°	Descripción		Peso en kg
13 530 501	Soporte derecho para MB 50	Detalles segùn dibujo	9.34
13 530 502	Soporte izquierdo para MB 50	Detalles segùn dibujo invertido (efecto espejo)	9.34

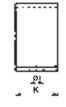


Kits de Ensamblaje

Tipo MB 50

Placa base MB 50

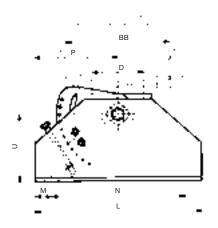

Kit IV

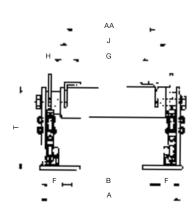


	Base Motor					Dime	ensiones	en mm						Peso
Art. n°	Тіро	Α	С	D	Е	F	G	Н	J	K	L	Μ	ØO	en kg
13 010 501	MB 50 x 160	26	0	43	216	270	64	120	24	140	178	230	M 10	7.8
13 010 502	MB 50 x 200	28	1 <i>7</i>	62	254	310	69	130	29	210	254	310	13	12.1
13 010 503	MB 50 x 270	35.5	2.5	74.5	279	350	74	80	34	241	279	350	13	15.4
13 010 504	MB 50 x 400	43.5	22	94	318	405	85	55	34	267	305	375	18	19.1
13 010 505	MB 50 x 500	54.5	41	113	356	465	54	74	39	286	311	420	18	24.5

Bridas BR

Kit V


		Dimensiones en mm							
Art. n°	Descripción	D	G	Н	ØI	K	М	en kg	
01 500 007	Bridas BR 50	78	130	170	18	50	6	0.66	



Base Tensora Tipo MB 70

Bases Tensoras para trabajos duros desde 37 a 110 kW

Selección

Base Motor Tipo	Tamaño Motor	1000 kW	1000 min ⁻¹ kW M _d		min ⁻¹ M _d	3000 min ⁻¹ * kW M _d		AA [n	BB nm]
MB 70 x 400	D 250M	37	353 Nm	55	350 Nm	55	175 Nm	349	406
MB 70 x 550	D 280S D 280M	45 55	429 Nm 525 Nm	75 90	477 Nm 573 Nm	75 90	238 Nm 286 Nm	368 419	457 457
MB 70 x 650	D 315S	75	716 Nm	110	700 Nm	110	350 Nm	406	508

* Debido al par relativamente bajo, recomendamos instalar motores de 2 polos en la Base pequeña MB 70, incluso en la MB 50. La placa base, de suministro del cliente, debe montarse desplazada (dimensión E = 50-90 mm) para conseguir una mejor palanca.

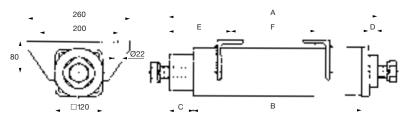
Dimensiones generales

(Ver detalles en Kits de ensamblaje MB 70)

Base Motor	Dimensiones en mm												
Tipo	Α	В	D	F	G	Н	J	L	М	Ν	Р	T	U
MB 70 x 400	550	350	200	100	300	50	420	650	65	520	325	325	265
MB 70 x 550	700	500	200	100	360	95	570	650	65	520	325	325	265
MB 70 x 650	800	600	200	100	380	135	670	650	65	520	325	325	265

Par de Torsión de las Bases Tensoras

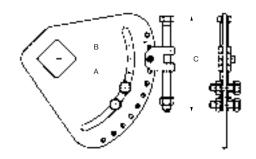
Base Tensora		Par Nm según Unidad y ángulo de pretensión:											
Tipo	5°	10°	15°	20°	25°	30°							
MB 70 x 400	250	765	1315	2160	3175	4750							
MB 70 x 550	345	1050	1800	2970	4365	6530							
MB 70 x 650	405	1240	2135	3510	5160	7720							



Kits de Ensamblaje

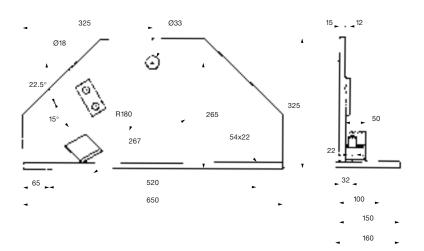
Tipo MB 70

Unidad Elástica ROSTA para MB 70 con casquillo


Kit I

Art. n°	Base Motor Tipo	А	В	С	D	E	F	Peso en kg
13 020 701	MB 70 x 400	520	420	60	22	110	300	38.4
13 020 702	MB 70 x 550	670	570	60	22	155	360	49.4
13 020 703	MB 70 x 650	770	670	60	22	195	380	56.0

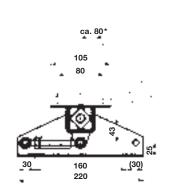
Dispositivo para pretensado MB 70

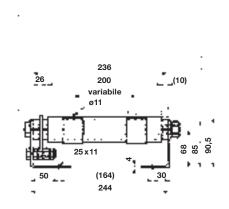

Kit II (necesarias 2 unidades)

Art. n°	Descripción	А	В	С	Peso en kg
13 040 701	Dispositivo para pretensado MB 70	180	227	220	6.53

Soporte Lateral MB 70

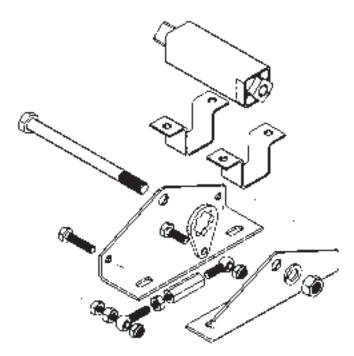
Kit III




Art. n°	Descripción		Peso en kg
13 530 701	Soporte Lateral MB 70 derecho	invertido al dibujo (efecto espejo)	33.15
13 530 702	Soporte Lateral MB 70 izquierdo	conforme dibujo	33.15

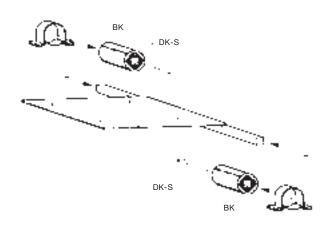
Base Tensora Tipo MB 27

Para potencias hasta 4 kW



Selección

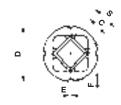
Art. n°	Base Motor Tamaño Tipo Motor		1000 min ⁻¹ kW	1500 min ⁻¹ kW	3000 min ⁻¹ kW	Peso en kg
13 000 210	MB 27 x 80	D 90S/L	0.75-1.1	1.1 – 1.5	1.5 – 2.2	3.88
13 000 211	MB 27 x 120	D100L	1.5	2.2-3.0	3.0	3.92
13 000 212	MB 27 x 200	D112M	2.2	4.0	4.0	4.00

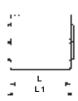

^{*}La placa base del motor, suministro del cliente, será instalada descentrada con el fin de proporcionar la mejor nivelación posible: recomendamos un descentrado aprox. 80 mm para todos los tipos MB 27.

El despiece de la izquierda, muestra la construcción de la Base Tensora ROSTA tipo MB 27. Al revés que el tipo MB 50, el tipo MB 27 se suministra completamente montado, con la excepción de la placa-base para el motor. Tanto por motivos de instalación como de manejo, el dispositivo de pre-tensado y los dos soportes laterales pueden girarse 180°. Los tres tamaños de Bases MB 27 tienen las mismas dimensiones exteriores, aunque las Unidades Elásticas ROSTA de los tipos MB27 x 80 y MB 27 x 120 las forman dos Unidades ensambladas en un mismo cuerpo.

Bases Tensores

Bases tensoras con Unidades Elásticas ROSTA tipo DK-S. Placa base del motor suministro del cliente


Las Unidades ROSTA tipo DK-S son una solución económica para pequeñas transmisiones por correas, ya que los componentes pueden hacerse en casa. Una barra de sección cuadrada soldada a la placa Base, nos permitirá montar a cada lado ambas Unidad Elástica tipo DK-S. Las bridas de fijación tipo BK aseguran y sujetan la Unidad permitiendo con facilidad el posicionado de la Base Tensora. La transmisión por correa se pretensa mediante una llave de gancho sobre las hendiduras del cuerpo exterior de las Unidad tipo DK-S. Selecciona la tensión de la correa de acuerdo con la tabla de la pag. 93.


Los tamaños de las Unidades se seleccionan de acuerdo con la potencia del motor, ver la tabla siguiente. Se utilizan dos Unidades ROSTA en cada Base Tensora. (Otros tamaños de Unidades pueden ser seleccionados en el catálogo de Unidades Elásticas).

Cuando se utilizan las Unidades DK-S 27 x 100, DK-S 45 x 100 y DK-S 50 x 120, se requieren dos bridas BK para cada Unidad. Las Unidades de longitud mas corta sólo llevan una brida de sujeción.

Unidades Elástica ROSTA tipo DK-S

Selección y Dimensiones

		Poten.		Dimensiones en mm						Par en Nm según α			Peso
Art. n°	Tipo	kW	L	L1-0.3	С	D	Е	F	S	10°	20°	30°	en kg
01 081 007	DK-S 18 x 30	0.25	30	35	12+0.25	45+0.4	5	2.5	18	4.5	11.0	20.6	0.13
01 081 008	DK-S 18 x 50	0.5	50	55	$12^{+0.25}_{0}$	45+0.4	5	2.5	18	7.5	18.3	34.4	0.20
01 081 011	DK-S 27 x 60	0.75	60	65	22+0.25	62+0.5	6	3	27	16.0	40.3	85.5	0.40
01 081 012	DK-S 27 x 100	1.1	100	105	22+0.25	62+0.5	6	3	27	26.7	67.2	142.5	0.66
01 081 013	DK-S 38 x 60	1.5	60	70	30+0.25	80+0.6	7	3.5	38	30.4	78.0	162.0	0.72
01 081 014	DK-S 38 x 80	2.2	80	90	30+0.25	80+0.6	7	3.5	38	40.5	104.0	216.0	0.94
01 081 016	DK-S 45 x 80	3.0	80	90	35+0.25	95+0.8	8	4	45	62.4	160.0	320.0	1.35
01 081 017	DK-S 45 x 100	4.0	100	110	35+0.25	95+0.8	8	4	45	78.0	200.0	400.0	1.65
01 081 019	DK-S 50 x 120	5.5	120	130	40+0.25	108+1	8	4	50	133.0	395.0	780.0	2.55
01 081 019	DK-S 50 x 120	7.5	120	130	40+0.25	108+1	8	4	50	133.0	395.0	780.0	2.55

Brida tipo BK

			Dimensiones en mm									
Art. n°	Tipo	D	G	Н	Ø١	K	M	Ν	0	en kg		
01 520 003	BK 18	45	68	90	8.5	30	2	8	24.5	0.14		
01 520 004	BK 27	62	92	125	10.5	35	2.5	10	33.5	0.29		
01 520 005	BK 38	80	115	150	12.5	40	3	11	43	0.45		
01 520 006	BK 45	95	130	165	12.5	45	3.5	13	51	0.68		
01 520 007	BK 50	108	152	195	16.5	50	4	15	58	0.93		

Aplicaciones

MB 50 en una transmisión por correas en criba circular

DK-S tamaño 18 especial para seleccionadora de correos

MB 50 en una punzonadora

DK-S tamaño 27 especial en un aire acondicionado

MB 50 en transmisiones de molinos

MB 70 en una sierra para mármol

Aplicaciones

MB 70 en una trituradora

MB 50 en una criba escurridora

MB 70 en una trituradora de mandíbulas

MB 50 en una criba

MB 50 en una criba para asfalto

Sector de Explotación

ROSTA suministra Unidades Elásticas para la mayoría de maquinaria industrial. Disponemos de fotografías y listas de referencias en sectores donde tenemos muchas aplicaciones. Para más información contacte con nuestro representante.

Alimentación

- Brazos oscilantes para transporte y selección de vegetales
- Juntas universales para cernedoras de harina
- Suspensión para cribas de lavado
- Doble brazo oscilante para transportadores de tabaco
- Bases tensoras para transmisiones por correas en molinos

Minería

- Suspensión para cribas de lavado
- Bases tensoras para trituradoras y cribas
- Sistemas elásticos para rascadores de banda
- Amortiguadores de impactos
- Suspensiones elásticas para amortiguar la caída de material pesado

Sistemas de Refrigeración

- Suspensión elástica para el alternador en camiones
- Tensor de correas en la transmisión del compresor
- Tensor de correas en la transmisión del ventilador
- Soportes antivibrantes para compresores

Sillas de Ruedas Eléctricas

- Suspensión de las ruedas traseras
- Suspensión pivotante para el bastidor de las ruedas delanteras
- Suspensión delantera y trasera en carritos para personas mayores

Sector de Explotación

Agrícola

- Tensores para todas las cadenas
- Tensores para todas las correas
- Brazos oscilantes para cribas en cosechadoras
- Suspensión para brazos de selección en cosechadoras de patatas
- Cojinetes elásticos en sembradoras
- Estabilizadores para los brazos de riego

Madera

- Brazos oscilantes ajustables para transportador de chips
- Juntas universales para tamices giratorios
- Amortiguador de impactos en los stopers para troncos
- Suspensión de rodillos guía en máquinas de fresado y pulido
- Suspensión para los transportadores de las mermas del tronco

Mantenimiento de calzadas

- Suspensión elástica para la pala quitanieves
- Elasticidad en las hojas de las rasquetas
- Flexibilidad en los cepillos rotativos
- Tensor para las correas de la bomba de vacío
- Suspensiones elásticas para faldones de barrido

Ferrocarril

- Suspensión elástica para pantógrafos
- Suspensión para colector en máquinas de metro.
- Aislamiento en compartimentos flotantes
- Sistemas de unión flexible entre vagones
- Amortiguación de impactos en colectores de rail

Información útil

1. Servicio al cliente y ofertas

Siempre que tenga un problema y necesite asistencia, por favor contacte con nuestro representante ROSTA quien le ayudará (ver lista en la contraportada).

Para ofertar precisamos de información técnica de la instalación y algunos sketchs y especificaciones, de esta manera encontraremos la solución óptima para usted tanto si es una pieza estándar como personalizada. Nosotros le entregaremos un cuestionario para determinar mejor cuales son sus necesidades.

Nuestros plazos y condiciones, vienen especificados en las ofertas.

2. Pedidos

Por favor indique el número de oferta (si existe) en su pedido, la descripción y número de artículo. Envíe sus pedidos al representante local.

3. Disponibilidad

La mayoría de nuestra gama de productos estándar se encuentra en stock para entrega inmediata desde nuestro representante ó desde ROSTA.

Naturalmente los elementos especiales requieren un tiempo de fabricación y por tanto un determinado plazo de entrega. No obstante, si utiliza regularmente estos elementos los plazos se reducen considerablemente.

4. Recomendaciones técnicas

Respete los límites de los Elementos ROSTA mencionados en este catálogo (límites de carga, de frecuencia, ángulos de oscilación, etc.). En caso de duda, por favor, contacte con nosotros o uno de nuestros representantes (vean la lista en la última pagina de este catálogo). Sigan cuidadosamente las instrucciones de montaje de cada Elemento y asegúrese de que el personal de montaje también las siga.

Nuestros Elementos se suministran normalmente sin tornillos de fijación para el posicionamiento final en su máquina. Emplee, por favor, los tamaños de tornillos de acuerdo con los agujeros de nuestras bridas y abrazaderas de fijación en calidad no inferior a 8.8.

Referente al par de fijación de estos tornillos consulte la norma ISO 898 o contacte con su suministrador de tornillos. Asegúrese que los tornillos de fijación están provistos de arandelas bloqueantes. Finalmente compruebe que las conexiones de los tornillos están de acuerdo con la norma VDI 2230.

Para las fijaciones de los componentes en partes de la máquina que están sin mecanizar (partes fundidas, por ejemplo, Bridas de los Elementos AB50) o partes con agujeros pasadores (por ejemplo: soportes de las bases de motores), emplee tuercas según la norma DIN 125B.

5. Consideraciones

Los asuntos y datos técnicos contenidos en el catálogo son información de ámbito general y no tienen carácter contractual. Los casos particulares se deberán considerar. Esta publicación no puede reproducirse ni total ni parcialmente, sin aprobación escrita del editor.

